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ABSTRACT

A challenge in gated cardiac single photon emission 
computed tomography (SPECT) is the presence of increased 
imaging noise owing to gated data acquisition. In this study 
we propose a joint reconstruction approach for gated SPECT 
in which the different gate frames are reconstructed in a 
collective fashion by taking advantage of the statistics of the 
acquired data. Besides spatial smoothing, we use Fourier 
basis functions to regulate the time activities at each spatial 
location across the different gates, which are periodic 
owning to the periodic cardiac motion. We demonstrate the 
proposed approach by simulating gated Tc-99m labeled 
sestamibi imaging based on the NURBS-based cardiac-torso 
(NCAT) phantom. 

Index Terms--- Gated SPECT, 4D reconstruction, spatio-
temporal processing, Fourier basis functions

1. INTRODUCTION 

Single photon emission computed tomography (SPECT) is 
one of the most prevalent diagnostic imaging techniques in 
use for diagnosis and evaluation of cardiac diseases. In gated 
cardiac SPECT, the data acquisition is synchronized to the 
electrocardiogram (ECG) signal, which can offer valuable 
information about myocardial perfusion and ventricular 
function [1]. However, the effectiveness of gated SPECT is 
at the expense of reduced photon count for each gate frame, 
which leads to increased noise in the reconstruction.  

In recent years, there have been increasing interests in 
development of spatio-temporal reconstruction methods for 
reducing noise in gated SPECT. For example, an image 
summing method via optical flow over different gates was 
proposed in [2]; a Bayesian estimation approach was 
proposed in [3] based on a prior motion model; a Karhunen-
Loeve transform method was used to de-correlate the gate 
images in [4]; a smoothing technique using polynomial 
fitting was described in [5]; in our previous work [6, 7], 
spatio-temporal reconstruction methods were developed to 
reduce the noise and motion blur based on motion 
compensation. These spatio-temporal methods aim to 
exploit the temporal correlation among the different gate 
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frames. Indeed, in cardiac SPECT the gate frames are 
essentially similar to each other except for the cardiac 
motion. In fact, they would be identical if it were not for the 
latter. Thus, it would be most effective to enforce smoothing 
along the motion trajectories in the gate frames. A challenge, 
however, is that the cardiac motion is not known a priori,
and would have to be estimated from the noisy image data.  

In this paper, we explore an alternative approach for 
spatio-temporal reconstruction of gated cardiac SPECT, 
which doesn’t require specific motion knowledge. Rather 
than using an explicit temporal prior based on image motion, 
we model the time activities at each spatial location by a set 
of Fourier basis functions. This is motivated by the fact that, 
owning to the periodic nature of cardiac motion, the image 
intensity at each spatial location exhibits as a periodic 
function of the cardiac cycle. Thus, the periodic image 
motion can be modeled implicitly by periodic changes in 
image intensity in the resulting Fourier representation model. 
We first explored this idea recently in [8], where we 
demonstrated that a Fourier basis representation can be very 
effective for noise reduction while preserving cardiac 
motion. Encouraged by this initial success, in this work we 
further develop this approach by also including a spatial 
Gibbs prior. Consequently, not only a temporal constraint 
based on the periodicity of cardiac beating is used, but also a 
spatial smoothing constraint is enforced in the 
reconstruction.  

In our proposed method, the different gate frames are 
estimated in a collective fashion by taking advantage of the 
statistics of the acquired data. Moreover, by varying the 
number of high order basis functions (i.e., high frequency 
components) used in the Fourier representation model, one 
can directly incorporate a temporal smoothing scheme into 
the reconstruction procedure in a spatially-adaptive fashion. 
Our evaluation results with gated Tc-99m labeled sestamibi 
imaging based on the NURBS-based cardiac-torso (NCAT) 
phantom demonstrate that the proposed approach can 
achieve significant noise reduction in reconstruction. The 
inclusion of spatial prior can further improves the accuracy 
of the reconstructed gate frames. 
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2. METHODS 

2.1. Image model 
In gated cardiac SPECT, the acquired projection data are 
binned into K gate intervals by using the ECG signal. The 
imaging model is described by the following 

[ ] , 1,...,k kE k Kg Hf                        (1) 
where gk, fk are vectors representing the acquired data 
(sinogram) and original image, respectively, in gate k, H is
the system matrix describing the imaging process in which 
each element hij represents the probability that a photon 
emitted at voxel j is detected at detector bin i, and [ ]E  is the 
expectation operator. 

Our goal is to estimate the images fk given the sinogram 
data gk. Due to the low count level in the data and ill-
conditioned nature of the system matrix H, a direct inversion 
of the imaging equation in (1) to reconstruct individual gates 
would lead to very noisy images in gated SPECT. Instead, in 
this study we explore a joint reconstruction approach in 
which the different gate frames are reconstructed in a 
collective rather than individual fashion. The goal is to 
exploit the fact that the different gate frames are essentially 
similar to each other except for the cardiac motion.  

2.2. Fourier basis representation model 
Based on Fourier series expansion, we model the image 
activity at pixel j over different gates as  

1

0
( ) ( ) ( ),   1, , ,   1, ,

K
k m mm

f j d j e k j N k K      (2) 

where ( )kf j  represents pixel j in gate k, ( )me k  denotes the 
m-th Fourier harmonic basis function which has the form of 

( ) exp 1 2 ( 1)me k m k K K , ( )md j  denotes its 

corresponding coefficient, and N denotes the number of 
pixels in a gate. 

As can be seen, by varying the number of high order 
harmonics (i.e., high frequency components) included in the 
representation in (2), we can achieve different degrees of 
smoothing along the gate dimension. Thus, such a harmonic 
representation model offers the flexibility that one can 
directly incorporate a temporal smoothing scheme (i.e., 
across the gates) into the reconstruction procedure in a 
spatially-adaptive fashion. For example, the AC coefficients 
are known to be zero at background pixels which are not 
associated with the periodic cardiac motion, and thus are not 
necessary to be estimated. This can lead to fewer unknowns 
to estimate, and consequently, faster reconstruction 
algorithms. As demonstrated in our experiments, this can 
also lead to more accurate reconstruction results.  

Substituting the image representation in (2) into the 
imaging model in (1), we obtain  
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where md  is a vector representing the collection of the m-th 
frequency coefficients ( )md j over all pixels.  

Equation (3) relates the projection data directly to the 
frequency domain representation of the K gate frames. Our 
goal is to estimate the unknown coefficients md  associated 
with the different orders of harmonic basis functions. 

2.3. Maximum a posteriori (MAP) estimate 
For convenience, define 1 2[ , , , ] ,T T T T

KG g g g  which is a 
vector denoting the collection of acquired (sinogram) data in 
all K gates; similarly, 1 2[ , , , ] ,T T T T

KD d d d denoting the 
collection of unknown coefficients of all K frequency 
components.  

We seek a MAP estimate of the unknown coefficients, i.e.,  
ˆ arg max log ( ; ) log ( )p p

D
D G D D (4) 

where p(G;D) is the likelihood function of G parameterized 
by D, and p(D) is a prior distribution on D.

In SPECT, the projection data are characterized by 
Poisson noise. The log-likelihood function has the following 
form 

1 1 1 1

log ( ; ) ( ) ( ) log ( )
K N N N

ij k k ij k
k i j j

p G h f j g i h f jD    (5)

where ( )kf j  is parameterized by D as in Eq. (2). 
To further reduce the impact of Poisson noise, we 

introduce the prior term p(D) in Eq. (4), which is used to 
impose a penalty when a pixel is significantly different in 
intensity from its spatial neighbors. Specifically, we use a 
Gibbs prior of the form 

( ) exp ( )s sp UD D (6) 
where Us(D) is an energy term defined as 
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where j  denotes a neighborhood region around pixel j. In 
our experiments, an 8-pixel neighborhood was used. In Eq. 
(6), s is a scalar weighting parameter used to control the 
degree of spatial smoothing.  

Upon substituting the representation model in Eq. (2) into 
Eq. (7) and then applying the Parserval’s identity, we can 
rewrite Eq. (7) as  
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From Eq. (8), we observe that the spatial variation of the 
image intensity in Eq. (7) is now represented equivalently by 
the spatial variation in the harmonic components. 

2.4. Reconstruction algorithm 
To find the MAP estimate in Eq. (4), we apply a generalized 
expectation-maximization (EM) algorithm [9]. For 
convenience, let vector S denote the collection of auxiliary 
variables k

ijs , which is defined as the number of photons 
emitted from within pixel j and detected in bin i in gate k.
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Then, in the E-step the expected value of the complete-data 
log-likelihood function can be written as [10] 

1 1 1
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 (9) 

where D̂ denotes the current estimate of D, and the 
factors k

ijp  have the following form 

ˆ ˆ( ) ( )k k
ij ij k ij k ij

p h f j h f j g (10) 

Note that in Eqs. (9) and (10) the quantity ( )kf j  is 
parameterized by D via Eq. (2).   

In the M-step, the estimate D̂  is updated as 
new oldˆ ˆarg max ( , ) ( )s sQ U

D
D D D D (11) 

In our experiments, we used an iterative coordinate ascent 
algorithm [9,11], in which the unknown coefficients are 
updated for each pixel in turn. The Newton’s method was 
applied for optimization of (11) at each step. For 
convenience, this method is referred to as DFT-MAP. 

3. EVALUATION STUDY 

3.1. Methods 
In our evaluation study, the 4D NURBS-based cardiac-torso 
(NCAT) 2.0 phantom [12] was used to simulate gated 
SPECT imaging with Tc99m labeled sestamibi as the 
imaging agent. A perfusion defect with 25% intensity 
reduction was introduced in the anterior-lateral region of the 
left ventricle. The simulation was based on a Philips Prism 
3000 SPECT system with a low-energy high-resolution 
(LEHR) collimator. The projections were 64 64  bins with 
a pixel size of 0.634 cm. For a circular camera rotation of 
28.5 cm radius, 64 projection sets were collected for each 
gate frame for a total of 16 gates. The average spatial 
resolution at the location of heart in the reconstructed slices 
was approximately 1.3 cm full-width at half-maximum 
(FWHM). Poisson noise was introduced at a level of 4 
million total counts for the whole acquired data as in a 
typical clinical acquisition. Neither scatter nor attenuation 
effects were considered in the simulation. 

For preliminary evaluation of the spatio-temporal 
reconstruction approach, we used a transversal slice (#37) of 
the phantom. Figure 1 shows the first gate of this slice, 
along with a magnified view of the myocardium. The use of 
simulated images allowed us to quantitatively evaluate the 
reconstructed images where the ground truth was known. 

To quantify reconstruction accuracy, we computed the 
signal to noise ratio (SNR) of the myocardium in the 
reconstructed images. The SNR of a reconstructed image f̂
is defined as 

2 2
10

ˆSNR 10log || || || ||f f f                        (12) 

Fig. 1. Slice #37 of the NCAT phantom (left) and magnified 
view of ROIs in quantitative evaluation of results (right). 

where f denotes the known truth. In our experiments, the 
SNR was computed for the myocardium ROI (shown in Fig. 
1) and averaged over the 16 gates. 

Also, to demonstrate the effect of temporal smoothing on 
cardiac motion, we also computed the time-activity curve 
(TAC) of an ROI selected on the LV wall (shown in Fig. 1). 
As the wall moves in and out of this ROI during the beating 
cycle, its average intensity will vary accordingly, and thus, it 
serves as a good indicator on the degree of temporal 
smoothing caused by the different methods. 

In our experiments, the AC coefficients were assumed 
zero and not reconstructed at pixels outside the myocardium 
region (indicated in Fig. 1). 

For comparison purposes, we also considered a post-
reconstruction temporal filtering approach for noise 
reduction, in which the 16 different gates were first 
reconstructed separately by using the classical ML-EM 
algorithm, then low-pass filtered along the gate dimension at 
each pixel location by truncating the higher-order frequency 
coefficients in the Fourier domain. This method is referred 
to as ML-LP in the following. 

3.2. Results 
In Fig. 2 we summarize the SNR results achieved by our 
proposed method DFT-MAP, the post-reconstruction 
filtering method ML-LP and the post-filter method from 20 
noise realizations. The abscissa in Fig. 2 represents the 
highest order of harmonic components used in the 
reconstruction. Moreover, to demonstrate the effect of 
spatial smoothing, results are also given in Fig. 2 for 
different values of spatial smoothing parameter s. Note that 
when s=0 it corresponds to no spatial smoothing enforced. 
For each parametric setting, the number of iterations was 
determined based on the best SNR achieved. 

From Fig. 2 we can see that the SNR of the myocardium 
region decreases monotonically with the order of harmonic 
functions used in the reconstruction. This demonstrates that 
the noise is increasingly associated with higher order 
harmonic components. In all cases, the DFT-MAP method is 
more accurate than ML-LP. This shows that it is more 
effective to incorporate temporal smoothing into 
reconstruction (as in the proposed method) than to apply 
post-reconstruction filtering.

TAC-ROI

SNR-ROI

Perfusion 
defect 
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Fig. 2. SNR results obtained by DFT-MAP and ML-LP.

In Fig. 3 we show the reconstructed TAC of the TAC-ROI 
(indicated in Fig. 1) obtained from 20 different noise 
realizations by the DFT-MAP method with the number of 
harmonics set at one, three, and five, respectively. As can be 
seen, as the number of harmonics increased, the 
reconstructed TAC on average approaches closer to the ideal 
TAC (smaller bias), but the variance also increases (more 
noisy images). In addition, the introduced spatial prior can 
significantly reduce the variance. As reference, the ideal 
TAC curve was obtained from noiseless reconstruction of 
the phantom using the ML algorithm (40 iterations). 

Finally, in Fig. 4 we show a set of typical reconstructed 
images by the DFT-MAP method with the order of 
harmonics fixed at three, where only the myocardium is 
shown for clarity; the ideal images are also shown for 
comparison. As can be seen, the LV wall is less noisy in the 
images with s=0.001 than that without spatial prior ( s=0). 
Moreover, the wall shape in these reconstructed images 
follows closely that of the ideal, indicating that the harmonic 
representation at order three can faithfully model the wall 
motion for reconstruction. 

4. CONCLUSIONS 
We proposed a spatio-temporal approach for gated cardiac 
SPECT, in which Fourier basis functions were used to 
regulate the periodic temporal activities across the different 
gates. Our preliminary evaluation results demonstrate that 
this approach can yield much more accurate reconstruction 
of gated frames in cardiac SPECT. In future, we plan to 
further evaluate the proposed method using task-based 
performance metric (e.g.  a channelized  Hotelling  observer  
for  perfusion defect detection). 
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Fig. 3. TACs obtained from 20 noise realizations by DFT-MAP 
with different number of harmonics. Top row: no spatial prior s=0;
Bottom row: spatial prior with s=0.001.
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Fig. 4. Top row: noiseless EM reconstruction; Middle row: no spatial prior ( s=0); Bottom row: spatial prior with s=0.001.
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